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We consider the scattering of two spin waves in a simple cubic Heisenberg ferromagnet
with nearest-neighbor interaction at zero temperature. The analytic properties of the inte-
grals relevant to the bound-state problem are examined and the solutions to the bound-state
conditions are located in the complex energy (w) plane for the first time. It is found that,
as a function of w, there are two Riemann sheets near the bottom of the two-spin-wave band.
For total wave vector § less than the threshold value for bound states, the existence of the
d-wave resonant states discovered by Boyd and Callaway is reaffirmed. Furthermore, we
confirm the observation of Boyd and Callaway that no s-wave scattering resonance exists.

L. INTRODUCTION

It has been shown by Dyson! that two spin waves
in a Heisenberg ferromagnet interact via an at-
tractive potential which increases with the total
wave vector § of the pair. Bound or resonant
states of two spin waves may exist for large §.
The two-spin-wave bound-state conditions have
been obtained by Hanus? and by Wortis.® Later,
Boyd and Callaway? and Silberglitt and Harris®
obtained the same conditions by different methods.
Wortis® has discussed the bound states in great
detail. He found that, for total wave vector §
larger than a threshold, there are three bound
states below the two-spin-wave band, among which
two states are degenerate if § is in the [111] di-
‘rection. Boyd and Callaway* derived an expression
for the two-spin-wave scattering cross section
for § along the [111] direction, which they re-
solved into two partial-wave components, s and
d waves. They showed that both s- and d-wave

bound states exist, and that the d-wave state is
doubly degenerate, while the s-wave state is non-
degenerate. Furthermore, they pointed out that
the d-wave bound states connect to resonant scat-
tering states in the band as g passes the thresh-
old, while the s-wave states do not show reso-
nant behavior. ® Looking into the singularities of
the two-spin-wave ¢ matrix, Silberglitt and Harris®
obtained a two-spin-wave spectrum which agrees

. with the results of Hanus, 2 Wortis, ® and Boyd

and Callaway.? They also gave a physical reason
why there is a d-wave resonance but no resonant
s state, and investigated the effect of the d-wave
resonance on the single-spin-wave spectrum.
The purpose of this paper is to reaffirm the
existence of the d-wave resonance and to confirm
the nonexistence of the s-wave resonance by ex-
amining the analytic properties of the integrals
relevant to the bound-state problem and locating
the solutions to the s- and d-wave bound -state
conditions in the complex energy plane. We find
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that there are two Riemann sheets near the
bottom of the continuum. On the physical sheet
the d-wave bound-state condition is satisfied by
the real energies corresponding to bound states
below the band for total wave vector g larger
than a threshold value g,. For g =q,. these bound-
state energies connect to the complex solutions
within the continuum on the unphysical sheet.
These solutions are associated with resonances.
The real parts of the complex solutions are the
resonant state energies and the imaginary parts
the widths of the resonances. Both increase as

q decreases from g, ; the ratio of their increments
is proportional to (cosig — cosig,)* ? for ¢ < q,.
So, narrow d-wave resonances are found near the
bottom of the band in agreement with the results
of Boyd and Callaway.* For ¢ larger than a
threshold value g/, the s-wave bound-state con-
dition has real energy solutions corresponding to
bound states below the continuum on the physical
sheet. When g<gq/, however, there exist only
real solutions which are below the continuum on
the unphysical sheet; they move toward the band
bottom as g increases, and connect to the bound-
state energies for g=q.,. Therefore, there is no
S-wave resonance.

In this paper, we study the analytic properties
of the two-spin-wave ¢ matrix by use of an approx-
imation scheme which (a) simplifies numerical
calculations but leaves the order of magnitude of
the quantitative results unchanged, (b) preserves
the analytic properties near the bottom of band,
and (c) maintains the qualitative features of the ¢
dependence of the solutions to the bound-state con-
ditions.

II. BOUND-STATE CONDITIONS

An isotropic Heisenberg ferromagnet with
nearest-neighbor interaction is described by the
Hamiltonian

H=-3 E S-S s (1)
where the exchange coupling constant J is positive
and the sum extends over all lattice vectors 1 and
over the vectors 0 joining an atom to its z nearest
neighbors. For the simple cubic lattice, z=6.

In this system, a simple spin wave’ with wave
vector k possesses the energy €,=2JSY;., ,. .

x(1 - cosk;) at zero temperature, with S being the
lattice spin. Two spin waves, however, interact!
via an attractive and wave-vector-dependent po-
tential

Vi, &y, @)=-20 2

i=%,9,2

cosky; (cosk,; — cos3q;) ,

(2)
where k, and k, are, respectively, the incident
and outgoing relative wave vectors, and { is the

total wave vector of the pair. Following Silber -
glitt and Harris, ® the two-spin-wave ¢ matrix is

t(ﬁ1 , 1;2, q,w)=-2J 2 {cosk,;(cosky — cosiq,)

1y§=%,9,%

x[1-24G ). B

Here the matrix A is defined by
T
- J cosk; (cosk, — cosiq,)
A ( , w)= - f i Vi 29
e 8 W=€g/200 = €q/ 2.0

xdkydkydk, , (4)

where w is the total energy of the interacting pair
of spin waves. For § in the [111] direction,

oAt 1 111
(=247 saa,-aap | 111
1 2-1-1
M e 71 | A

The bound-state conditions®® are

d wave: 1-24,+247=0, (6a)
swave: 1-24,-4A7=0. (6b)
In the above,
Ap=Ay

1 cos®k, — a cosk,
"7 3218%S v +a(cosk, + cosk, + cosk,)
-T
x dhydhydk, (T2)

and
Af=Ay,

T
1 cosk, cosk, — @ cosk,
321°S v+ a(cosk, + cosk, + cosk,)

x dk,dkydk, , (Tb)

with v=3(w/2JzS -~ 1) and o =cos3q. Here ¢ is the
magnitude of each component of §. In order to
avoid extensive numerical calculations, we approx-
imate Ay and A§ by the expressions By and B,
respectively, defined by

R(k) T(R)
Bo=- 2 f VraF(k) (82)
and
’_ 1 I . M(R) - aT(k)
Bo== g% fo L v+afF (k) (8)
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where = (sinV2k)/V2E , (11)
F(k)=3 - 4k%/n? for k< i (92)
1480 = BY/a? for br<hin (9b) T(k)={cos(k cosb)) = (sink)/k . (12)
and In Egs. (10)-(12), () denotes the average over the
R(k)=(cos®(k cos0) )= L + (sin2k)/4k (10) solid angle Q.% In Appendix A, we discuss this

approximation in detail. With Egs. (9)-(12), di-
M(k)={cos(k sinf cos¢) cos(k cosb)) rect integration yields the following results:

J
1 T2 _Rk) __1 1/2 ( 2241 a-1 m(a+4) al/241
2172 fo kédk V+aF(k) = 64 mz In zl?z_ 1 —4‘”11].( p - al/z In all‘z_l >

+H(z; 2) - H(a; 2)+-a—i27—2- L(a; 2)} , (13a)

L [Ty T®) 1 [, : 2 .
o E A k4dkr JiaF(R) "~ 16a [H(z, 1) +H(a; 1)—;17-2—L(a,1)] , (13p)

1 ! M(k 1
?ﬂ-g—./; E2dr ;-Ti—%@) = {6V 3a {JH(z; fﬁ)+cos(ﬁﬂ)[—H(a; x/_2)+-a%} L(a; \/'i)]

+sin(v‘é1r)[N(a; V2)+ 2 Ola; \/‘2)}} . (130)

In Eq. (13),
H(a;c) = cos(3nc a'?) T(a; c) - sin(3rc a¥/ ) W(a; c) ,
G(a; c)=sin(4rc a'/?) T(a; c) + cos(irc a’/ &) W(a; ¢) ,
(14)
N(a;c) = - sin(inc a2 U(a; ¢) - cos(ine a¥?) V(a; c) ,
L(a; c) = cos(3mc a¥?) Ua; c) - sin(inc a2 V(a, ¢) ,
where®
T(a;c)=Si[3nc(a¥ 2-1)]-Si[3rc(@/2+1)],
W(a; c) = Ci[inc(a’’?-1)] - Ci[inc(a¥ 2+1)],
(15)
U(a; c) = Si[imc (@ ?-1)]+Si[3nec (@ 2+1)] - 2SiGnc a'/?)
V(a; ¢) = Ci[imc(a'/2-1)]+Ci[irc(@/?+1)] - 2Circal’?) ,
with
z=v/a+3, a=-@/a+1). (16)
—
IIL. SOLUTIONS AND PROPERTIES OF BOUND- e, 2Y2%+1 Ve (2=2)Y241
STATE EQUATIONS 2y, Q-2
In Appendix B we show that for the true inte- ln; :Z
grals Ay and A/ in the v/a plane, there are four
square-root branch points v/a=-3,~-1,1, 3, and Thus there are three branch points z=0, 1, 2 in
furthermore, for Re(v/a)< -1, there are two the z plane. The cut between z=0 and 1 is of
Riemann sheets cut by the real axis between -3 second order, and the cut between z=1 and 2 is
and —1. From (13), we see that the nonanalytic of infinite order. Therefore, for both B, and B

contributions in B, and B are of the forms in the v/a plane with Re(v/a)< - 2 there are two
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FIG. 1. Location of solutions to the d-wave bound-state

condition in the v/ plane. The solid line with arrow
represents the real solutions on the first sheet. The bro-
ken lines represent the complex-conjugate solutions on
the second sheet. The arrows indicate the direction of
increasing ¢, The branch cut is represented by the wavy
line.

Riemann sheets. Since Re(v/a)=~ 3 corresponds
to the bottom of the two-spin-wave band, it is
confirmed that near the bottom of the continuum
the analytic properties of the true integrals are
represented correctly in the approximated inte-
grals.

The approximated bound-state condition for the
d-wave case is

1-2By+2B{=0. ' )
Using Eqgs. (7) and (8), Eq. (17) can be written
in the form
~ 1 T o, . R(k)-M(E)
=T 4% ,[o Kk v/a+F(k) (18)

When v/a~ - 3, using (13a) and (13¢), we expand
the right-hand side of Eq. (18) in a power series
in z=v/a +3 and write (18) as

Sa=0.07+0.05z +0.04z%+0.03:25/2

for z~0. (19)
Letting z=7¢'®, Eq. (19) becomes

Sa =0.07+0.057 cosf+0. 04r2cos26

—-0.037%/2gin36, (20a)
0=0.057sinf + 0. 04r2sin260 + 0. 037% 2¢coss0
(20b)
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for »~0and 472 62 0. Here 2r2 020 corresponds
to the first sheet and 472 6> 27 to the second sheet.
We shall solve for v/a in terms of o where 1> a>
0. Solving Eq. (20), we find the following.

(i) v/a=-3 when a=0a,=0.14 for S=%, 0.07
for S=1. Then the threshold wave vector is g,
=164° for S=4, 172° for S=1.

(ii) There does not exist any solution to (20) for
w2620, 2726237, and 7> 02> 37, That is,
within the continuum on the first sheet and below
the band on the second sheet, solutions for v/a
do not exist

(iii) For 372 0217, the solutions to (20) lie on
the real axis, i.e., 0=7 and rec a,~ a for @S a,.
Hence below the continuum on the first sheet there
exist real solutions for v/a for @< &, which move
toward the band bottom as « increases.

(iv) For 372 6>2r and 47> 6217, rca - a,,
6=2r* and 47~, and

I’V'SinOl o(a - ac)slz (7 sinb)

R el A - 3/2
> 8(rcosb) <(a-a,)

for a2 a, .

Therefore, on the second sheet within the band
there are pairs of complex-conjugate solutions
for v/a for o> a, which move deeper into the
band and farther away from the cut as @ increases,
and the slope of their locus is proportional to
(- a,)%? for a2 a,.

From (18), we note the nonexistence of the so-
lution for v/ on the right half of the v/« plane.
Furthermore, only real solutions for v/a exist
below the continuum. They approach — 3 from
minus infinity as @ increases from zero up to
a,, since

da B2 R(k) — M (k)
aw/a) W‘/ dk [v/a +F(k)]2 0.
These real solutions must lie on the first sheet,
which is usually called the physical sheet. The
second sheet is often called the unphysical sheet.
Figure 1 shows the above results.
The s-wave bound-state condition is

1-2B,-4B}=0. (21)

'By (7) and (8), Eq. (21) is written as

- .L R(k)+2M(k)
@= 272 f k*dk v/a +F(k)

( 28+———f kidk /Zﬂ(k) ) . (22)

When Re(v) 20, there is no solution for v/a to
(22) for @ 20, since the right-hand side of (22)
is negative for S23. Now we expand both the
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numerator and demominator of the right-hand
side of (22) in a power series in z=v/a +3, and
write (22) in the following form:

0.3-(S+0.4)a -(0.5-0.350)z

+0.46(1 - @)iz'/%=0 for z~0. (23)
With z =7e'®, (23) becomes, for »~0 and 472 620,
0.3-(S+0.4)a - (0.5~-0.35a)rcos®

~0.46(1 —a)r¥2sint6=0 (24a)

and
(0.5 - 0. 35a)rsind — 0.46(1 — a)r'/2cosi6=0.
(24b)

Solving (24), we find that (1) v/a=- 3 when «
=as=0.32for S=3, 0.2 for S=1. So, the thresh-
old wave vector is g/ =142° for S=%, 157° for
S=1. (2) There is no solution on both sheets with-
in the band for @>a/. (For 372620, 3726247,
472 6>y, no solution for 7, 6 exists.) (3) When
asal, 6=rand v« [(@ -a!)/(1 - a)]?. Thatis,
below the band on the first sheet there exist real
solutions which approach the band edge as a is
raised up to a;/. (4) When aR o/, 6=37 and 7
«[(a-a’,)/(1-a)]? Thus, real solutions on the
second sheet below the continuum exist, and move
away from band edge as «a increases. The above
features are shown in Fig. 2.

IV. DISCUSSION

We have explicitly shown that as ¢ exceeds the
threshold value g, the real energy solutions to the
d-wave bound-state condition (1'7) below the band
on the physical sheet move into the band on the
unphysical sheet and become complex with real
and imaginary parts increasing by amounts pro-
portional to (cosig — cosiq,) and (cosiq - cosig,)*?
respectively. The real energies correspond to
bound states of two spin waves and the complex

v
a -plane

/I3

FIG. 2. s-wave case. The solid line with arrow rep-
resents the real energy solutions on the first sheet cor-
responding to bound states. The broken line shows the
real solutions on the second sheet which do not have any
physical meaning. The arrows indicate the direction of
increasing ¢ (decreasing q). The wavy line represents
the branch cut.
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FIG. 3. The dotted lines represent the results we ob-
tain by using the approximation method described in the
text. The solid lines represent the results of previous
authors. The d-wave states move into the band and show
resonance. The s-wave states do not go into the band at
all.

ones are associated with the resonant scattering
states. So, we have found sharp d-wave reso-
nances close to the bottom of the continuum. For
the s-wave case the bound-state solutions to Eq.
(21) on the physical sheet, however, move onto
the unphysical sheet, but turn back along the real
axis away from the band bottom as g passes ¢q/.
Thus we conclude that there is no s-wave reso-
nance. Figure 3 shows, as a comparison, the
two-spin-wave spectrum by our approximation
method and the results by the previous authors. ”
Note that the qualitive features of ¢ or o depen-
dence of the s- and d-wave bound-state spectra
are not affected by the approximation scheme we
used. The quantitative results, however, are
changed by a factor of 2; the order of magnitude
of the bound-state and resonant-state energies are
preserved. We have avoided using computer cal-
culation to get the exact spectrum and believe

that the approximation used leads to a good under-
standing of the d- and s-wave properties.
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APPENDIX A: APPROXIMATION SCHEME

In this appendix, we discuss the approximation
scheme in detail. Firstly, leaving the integrand
numerators of the true integrals A;and A§ un-
touched, we approximate the cosine functions in
the integrand denominators by quadratic functions
f given by



4 TWO-SPIN-WAVE RESONANCES AND THE ... 3103

f(y)=1-4y2/g?
=~1+4(r—|y|)¥/n® for in<|y| <. (A1)

f(y)= cosy as shown in Fig. 4. Secondly, with the
coordinate transformation

for |y|<4m

k,=kcosb
J

ky=ksinfcos¢ ,
k,=Fksinfsing , (A2)

we replace the cubic integration domain in the
A’g by a sphere of radius 7 centered at the origin
of k space (see Fig. 5.). That is, we take the
following expressions:

L 2r T 2 _
___ls__f kzdkf o [ sin6d6 o8 (2 cosb) — a cos(kcosb)
321°S J, 0 o

v+ah(k, 0, ¢) for 4, (43)
and
1 f "o, f ar [ T cos(?cosf) cos(ksinfcosp) — a cos(kcosf)
- kédPR . d sinfdo - for A} A4
321 Jy . %, v+ ahe, 6, 0) 5 (A4)
]
where

h(k, 8, ¢)=f(k cosb)+f(ksinb cosp)
+f(ksinb sing). (A5)
We note that (i) when <37,
h(k, 6, )= 3 - 4k%/7%=F (k) , (A8)

and (ii) when $n<k<m, h(k, 6, ¢) is equal to or of
the order of

1+4[(7 - k|cosb|)? - k?sin0] /72

for 050<im, 3n<0<nm, and 0< < 21 , (A7)

05

FIG. 4. cosy and f(y) defined in Appendix A.

1+4[- k2c0s%0 + (1 — k| sinf cose | )? - k¥ sin®6 sin’p )/n*
for irS0S n, 0S¢ <im, dnso<tn,
and fr<¢ < 27, (A8)
1+4[- k2 cos?0 - k?sin®0 cos®p + (r ~ k| sinb sing | )2]/n®
for ig <0< im, nidpSim,
and $v <p<fm . (A9)

Thirdly, in order to approximate k(k, 6, ) by an
angular-independent expression over the entire
shell region, we choose the value at 6= ¢ =0 for
(A7), at 0=%7, ¢ =0 for (A8), and at 0=¢ =37
for (A9), and obtain the final approximate form
F(B)=1+4(r - B)%/7% for h(k, 6, ¢) for 37k < .
Thus we find expressions B, and B{ defined in (7)
and (8) as the approximations to Ay and Ay, re-
spectively.
APPENDIX B: ANALYTIC PROPERTIES OF TRUE
INTEGRALS

We note that the singularities of the integrands
of the true integrals A, and AJ are given by the
equation

v/a +cosk, +cosk,+cosk,=0, (B1)
Ak
™
N, o~
NN
Nk,6.6)
/// " \\‘
/, A
I, //’ I Lll ‘\\
/ l’ \ ﬁ\\ \
! / AR i \
3 \ \
/ 1
| / g ! o —
] $1 T ky
”/
k" "

FIG. 5. An octant of the integration domain.
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Thus, v/a=-3,-1,1, 3 are end-point singularities!?
of Ay and A§ corresponding to end points of con-
tour of integration (&,, %,, ,)= (0, 0, 0), (0, 0, 7),

(0, m, m), (m, mm), respectively. To see the nature

of these singularities we consider, for simplicity,

nfff

which has the same analytic properties as the A’s.
Since

dk,dk, dk,
v/ +cosk, +cosk, + cosk,

’

T
1 [ dk,dk,
K v/a +cosk, +cosk, + cosk,
0

T. CHIU-TSAO

| v

~ Cy(@)In(v/a +cosk, - a) + C,(a)
(B2)

for v/a+cosk,~a, where a=-2,0,2, we observe
that Dyoc (v/a — b)Y/ 2 for v/a~b, where b=—3,
—-1,1,3. Therefore the end-point singularities of
Ay and A are all square-root branch points. It
is well known that across the real axis between
v/a=-3and 3, the imaginary parts of A, and 4,
change sign, while the real parts are continuous.
So the branch cut lies on the real axis between
—~3and 3, in the v/a plane. Furthermore, there
are two Riemann sheets for the part of the v/
plane where Re(v/a)<-1.
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The Cowley theory is used to estimate the effect of nonstoichiometry on long-range order

in B-CuZn alloys.

Accurate Ising-model calculations of the tem-
perature dependence of long-range order in f-CuZn
are available at the present only for the stoichio-
metric alloy.}’® To estimate the change in the long-
range-order curve due to a departure from the
stoichiometric composition, we have investigated
the approximate theory of order developed?® and re-
vised* by Cowley. Although its thermodynamic
formulation is not rigorous, we shall show that
this theory does give a long-range-order curve for
equiatomic B-CuZn in good agreement with Ising-
model calculations except at the higher temperatures
near 7., and it can give the proper dependence on

composition in the limit of low temperatures, so
we suggest that it should give a reasonable esti-
mate of the effect of nonstoichiometry over much
of the range of temperature below T,.

Cowley did not give an expression for long-range
order in nonstoichiometric alloys in his papers.
Our equations for the B-CuZn alloys are derived
from his initial paper?® after changing one approxi-
mation, which appears equivalent to using a simple
form of the revised approach of his later papers.*
Cowley developed an expression for the free en-
ergy in terms of the Warren short-range-order
parameters a;, which had been shown to have



